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Abstract - Laser Doppler Flowmetery (LDF) is a noninvasive
method to assess tissue blood flow. Previously published works
have proposed a mathematical model for LDF and showed that
there is a relationship between first moment of power spectrum
and the velocity of moving blood cells (MBC’s). Also researchers
have studied this method by mathematical analyses in various
aspects. In this paper a new model for LDF based on Monte
Carlo method is proposed. We have shown that this new model
is more flexible and provides a better agreement with the
experimental results. For example this model represents the
nonlinear relationship between the first moment of power
spectrum and the blood cells velocity which is not seen in
previous models.

Index Terms - Laser Doppler, Blood Flowmetery, Monte
Carlo Method

I. Introduction
Laser Doppler flowmetery (LDF) is a noninvasive

technique for measuring blood flow in tissue. In this method
a coherent laser light illuminates the tissue and the scattered
light from skin surface which part of that is Doppler shifted is
collecting by the photocurrent.

A mathematical model for LDF has been proposed by
Bonner and Nossal [1]. Due to high scattering properties and
complex structure of tissue, this model presumes a uniform
light around any blood cell. Under normal conditions a
backscattered photon usually coincides with more than one
MBC that is called “multiple scattering” effect. By
considering the Poison distribution function for number of
coincidence of a photon with MBC’s, this effect is also taken
into account. Bonner and Nossal showed that the first
moment of photocurrent power spectrum ω  is proportional

to root mean square of blood cells velocities 
2/12v [1]:
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where v is blood cells velocities, β is an instrumental factor, ξ
is a factor related to shape of cells, a is the radius of an
average spherical scatterer and m is mean number of
coincidence of a photon with moving cells that is
proportional to concentration of MBC’s. For 1m << the

( )mf  function is linear.

Experimental results achieved by Ahn et al. [2] show that
for low values of blood cells velocities (<100 ml.min-1.100g
tissue) there is a linear relation between blood cells velocity
and first moment of power spectrum. But for higher values of
blood cells velocities this relation becomes nonlinear.

 In this paper a new model is proposed for LDF
measuring of blood perfusion at skin. It is based on Monte
Carlo method and simulation of photons transmission
through the tissue. Doppler effect is also considered in this
model. The computer simulation showed a nonlinear
relationship similar to the experimental findings. The Monte
Carlo method ability to obtain and presume a wide range of
parameters make this method a good approach to study the
LDF method for measuring skin blood flow.

II. The Model
A layered model is considered for the skin. Such a model

has been used by other researchers and has considerable
accordance to experimental results [3, 4]. Photons are
considered in groups named packet. This decreases the
deviation of results and lets considering variable weights for
packets. To perform the Monte Carlo method, N photon
packets are considered with initial weight w0=1 (which will
be normalized during the process). Movements of each
photon is simulated from initial position until it exists from
skin surface or its weight yields negligible effect on final
results. Every photon may experience the scattering,
absorption, refraction, reflection or Doppler effect during the
propagation through the tissue. To simulate these phenomena
the following parameters should be known for the desired
laser wavelength. These are layer refraction index n,
absorption coefficient µa, scattering coefficient µs, mean-
cosine of scattering angle g, and layer thickness d. For
biological tissue the Henyey-Greenstein distribution function
for cosine scattering angle distribution function shows
acceptable agreement to experimental results [3]. This
function is defined as [6]:
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In each step a photon passes the free length s and comes to
interaction site. Free length is calculated as [7]:
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where ξ is a random value between 0 and 1 with uniform
distribution function. Interaction point is the site where a
photon is absorbed and scattered.

Red blood cells provide dominant number of erythrocytes
in blood. Also blood plasma makes low scattering and is
much more transparent than red blood cells. Therefor it can
be assumed that every interaction point in the blood layer is a
blood cell. Doppler shift can be calculated as [8]
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where f∆ is Doppler shift, sK
v

is scattered vector, iK
v

is
incident vector and V

v
is velocity vector. Scattering and

incident vectors are known for every photon at interaction
point during simulation and Doppler shift can be calculated.
These shifts are added together for every photon

III. Results
A five-layer structure is considered for skin. Optical

parameters are shown in table 1 for He-Ne Laser wavelength
(633 nm) that is widely used for LDF measurements. Laser
beam radius is considered 0.1 mm. Power reduction of

photons relative to distance from the laser source have a
shape roughly close to an exponential function (figure 1) as
have been obtained by computational calculations [7] and
experimental results [8]. Mean number of photon collisions
with MBC’s increases linearly relative to distance from laser
beam origin (Figure 2) as obtained by computational
calculation [9], mathematical model and experimental results
[10].

Total backscattered power from tissue is 22% of power
diffused in tissue. 0.78% of the total backscattered power is
obtained from photons that make the Doppler signal. Photons
that have diffused only in epidermis layer make 56% of the
total power received at the skin surface. This means that
epidermis layer has dominant absorption of laser power. The
model shows that the maximum value of m occurs in about
0.5 mm distance from laser beam origin (Figure 3) which
means that this fiber separation is optimum to have maximum
signal to noise ratio. It has good agreement to LDF
instruments that use a value between 0.5-1 mm [11].

First moment of Doppler frequency power spectrum has
obtained for different velocities. A gaussian distribution
function is considered for photons velocities. Figure 4 shows
the power spectrum of backscattered photons from skin
surface for different values of cells mean velocities. Figure 5
shows first moment of photocurrent power spectrum relative
to mean velocity of blood cells. As it can be seen, for lower

Figure 1. Logarithm of normalized power against fiber separation.

Figure 3. Mean number of Doppler events per photon against fiber
separation.

Figure 2. Total number of photons collisions with moving blood cells
against distance from incident laser beam origin.

Figure 4. Power spectrum of photocurrent for different velocities of
moving cells smoothed by a second order butterworth filter.
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values of cell velocities the relation is near to linear. By
increasing the blood cells velocities a reduction occurs in first
moment of power spectrum. This model shows a well
accordance to experimental results

IV. Conclusions
The Monte Carlo model proposed in this paper for LDF

of skin has shown to be a viable tool for study of blood
perfusion of skin. The simulation results have shown to be in
good agreement to experimental results. The Doppler effect
is considered in this model. The nonlinear relation between
first moment of power spectrum of photocurrent and blood
velocity was presented in the results. Wide range of Monte
Carlo method parameters can lead the model for a more
accurate simulation.
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Figure 5. First Moment of power spectrum relative to mean velocity of
moving cells.  

Table 1. Skin parameters for 633 nm wavelength at various layers [5].
µµµµa

(µµµµm)-1
µµµµs

(µµµµm)-1
ngd

µµµµm
Layer

0.00350.0481.550.7965Epidermis

0.000270.01871.550.82350Upper Dermis

0.00250.041.330.98100Blood Layer

0.000270.01871.550.82550Lower Dermis

0.000020.0021.450.8320Subcutaneous fat
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